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Introduction
Two dominant modelling paradigms:

Differential equations and Neural networks

Neural differential equations: awkward hybrid or perfect match?

Goal for this talk: convince you of the latter!
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What is a neural differential equation?

There are differential equations where the vector field is parametrised
as a neural network.

Standard example – Neural ODEs (Chen et al. 2018).

dy
dt

= fθ(t, y(t)),

y(0) = y0,

where fθ can be any neural network (feedforward, convolutional, etc).
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Examples of neural ordinary differential equations
A simple example: The SIR model for modelling infectious diseases

d
dt

s(t)
i(t)
r(t)

 =

 −bs(t)i(t)
bs(t)i(t)− ki(t)

ki(t)

 ,

where b and k are parameters that are learnt from data.

What is a neural differential equation anyway?
(And why you might already be using them.)

Classical example of a ‘neural’ differential equation: the SIR model.

d
dt

s(t)
i(t)
r(t)

 =

 −b s(t) i(t)
b s(t) i(t)− k i(t)

k i(t)


b and k are parameters learnt from data.

An ODE solve produces a computation graph, that we can backpropagate
through: train b and k via SGD.

Neural Differential Equations Patrick Kidger 5

At the other extreme, Neural ODEs can outperform standard machine
learning models (e.g. ResNets) on tasks such as image classification [2].
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Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN ). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.
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t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.
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Universal differential equations for scientific computing
Universal differential equations [3] are the general idea of modelling
systems with

dy
dt

= fknown(t, y(t)) + funknown(t, y(t)). (1)

• fknown describes the system well and utilizes domain knowledge.
• funknown is a (small) neural network so that (1) can better fit data.100 101 102 103
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Figure 5: Convergence of neural closure relations for a non-Newtonian Fluid.
(A) Error between the approximated σ using the linear approximation Equation
23 and the neural network closure relation Equation 18 against the full FENE-
P solution. The error is measured for the strain rates γ̇ = 12 cosωt for ω =
1, 1.2, . . . , 2 and tested with the strain rate γ̇ = 12 cos 1.5t. (B) Predictions of
stress for testing strain rate for the linear approximation and UODE solution
against the exact FENE-P stress.

17

Figure: Approximating a FENE-P model for non-Newtonian fluids (from [3]).
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Why Neural ODEs?

• Continuous time, so well suited for handling (irregular) time series

• Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

• State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]

• Choice of ODE solver allows trade-offs between accuracy and cost

• Allows for “continuous time” backpropagation withO(1)memory!
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Why Neural ODEs?

• Continuous time, so well suited for handling (irregular) time series

• Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

• State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]

• Choice of ODE solver allows trade-offs between accuracy and cost

• Allows for “continuous time” backpropagation withO(1)memory!

Potential limitation
ODEs are deterministic, so are not suitable for modelling “noisy” data.
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Neural Stochastic Differential Equations
The Neural SDE takes the form

yt = ℓθ(xt),

dxt = µθ(t, xt)dt+ σθ(t, xt)dWt ,

x0 ∼ νθ(ξ),

where
• µθ, σθ and νθ are neural networks.
• ℓθ is a linear map.
• W is a multidimensional Brownian motion.
• ξ ∼ N (0, Id) is some initial noise.
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The Neural SDE takes the form

yt = ℓθ(xt),

dxt = µθ(t, xt)dt+ σθ(t, xt)dWt ,

x0 ∼ νθ(ξ),

where
• µθ, σθ and νθ are neural networks.
• ℓθ is a linear map.
• W is a multidimensional Brownian motion.
• ξ ∼ N (0, Id) is some initial noise.

Questions
• What does it mean for a Neural SDE to correctly model the data?
• Should we minimize mean squared error? (like for Neural ODEs)
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Loss functions for Neural SDEs
We want

Distribution
(
SDE solution

)
≈ Distribution

(
Data

)
Some approaches:

• Match mean behaviour, i.e. minimize |Ey∼SDE[F(y)]−Ey∼Data[F(y)]|

• F is a neural network with ∥F∥ ≤ 1 trained to maximize the difference

• F is defined by a reproducing kernel k(·, ·). If F =
∑

i αik(xi , ·), then

max
∥F∥≤1

∣∣ESDE[F(y)]− EData[F(y)]
∣∣ = Ex,x ′

[
k(x, x ′)

]
− 2Ex,y

[
k(x, y)

]
+ Ey,y ′

[
k(y, y ′)

]
,

where x, x ′, y, y ′ are independent with x, x ′ ∼ SDE and y, y ′ ∼ Data .

• Domain knowledge: E.g. in finance, F can be the pay-off of an option

• Variational inference gives lower quality SDEs, but is easier to train!
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Training Neural SDEs in the Wasserstein metric

We would like to train the SDE to minimize the 1-Wasserstein distance:

W1

(
SDE,Data

)
:= sup

∥F∥Lipschitz≤1

∣∣Ey∼SDE[F(y)]− Ey∼Data[F(y)]
∣∣.

That is, we want to find F that distinguishes between real and fake data.

Some natural choices:

• Feedforward neural network

• Recurrent neural network

• Another neural differential equation!

We use the latter to define Fϕ , which is then trained alongside the SDE.
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Neural SDEs as Infinite-Dimensional GANs

In data science, a generator (NSDE) trained with learnt discriminator(s)
(Fϕ) is known as a Generative Adversarial Network (or GAN).

They usually generate images – not time series!

Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a varia-
tion of the truncation trick [42, 5, 34] with ψ = 0.7 for resolutions
42 − 322. Please see the accompanying video for more results.

while FFHQ uses WGAN-GP for configuration A and non-
saturating loss [22] with R1 regularization [44, 51, 14] for
configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows an
uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs,
the average quality is high, and even accessories such
as eyeglasses and hats get successfully synthesized. For
this figure, we avoided sampling from the extreme regions
of W using the so-called truncation trick [42, 5, 34] —
Appendix B details how the trick can be performed in W
instead of Z . Note that our generator allows applying the
truncation selectively to low resolutions only, so that high-
resolution details are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 10242

resolution.

2.2. Prior art

Much of the work on GAN architectures has focused
on improving the discriminator by, e.g., using multiple
discriminators [18, 47, 11], multiresolution discrimination
[60, 55], or self-attention [63]. The work on generator side
has mostly focused on the exact distribution in the input la-
tent space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [48], or encouraging convex-
ity [52].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [46], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing

To further encourage the styles to localize, we employ
mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-

3

Figure: Images generated by the StyleGAN [5]
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H0 = ξφ(Y0)

X0 = ζθ(V )

V ∼ N (0, Iv) Wt = Brownian motion

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt D = mφ ·HT

Yt = αθXt + βθ

Noise

Generator

Discriminator

Initial Hidden state Output

Figure 2. Summary of equations.

so are able to introduce a backward-in-time adjoint equa-
tion, using only efficient-to-compute vector-Jacobian prod-
ucts. In applications, they use neural SDEs in a latent vari-
able modelling framework, using the stochasticity to model
Bayesian uncertainty.

Hodgkinson et al. (2020) introduce neural SDEs as a limit
of random ODEs. The limit is made meaningful via rough
path theory. In applications, they use the limiting random
ODEs, and treat stochasticity as a regulariser within a nor-
malising flow. However, they remark that in this setting
the optimal diffusion is zero. This is a recurring problem:
Innes et al. (2019) also train neural SDEs for which the op-
timal diffusion is zero.

Rackauckas et al. (2020) treat neural SDEs in classical
Feynman–Kac fashion, and like Hodgkinson et al. (2020);
Tzen & Raginsky (2019a;b), optimise a loss on just the ter-
minal value of the SDE.

Briol et al. (2020); Gierjatowicz et al. (2020); Cuchiero
et al. (2020) instead consider the more general case of us-
ing a neural SDE to model a time-varying quantity, that
is to say not just considering the terminal value of the
SDE. Letting µ, ν denote the learnt and true distributions on
path space, they all train by minimising

∣∣∫ fdµ−
∫
fdν

∣∣
for functions of interest f (such as derivative payoffs).
This corresponds to training with a non-characteristic
MMD (Gretton et al., 2013).

Several authors, such as Oganesyan et al. (2020); Hodgkin-
son et al. (2020); Liu et al. (2019), seek to use stochasticity
as a way to enhance or regularise a neural ODE model.

Song et al. (2021), building on the discrete time counter-
parts Song & Ermon (2019); Ho et al. (2020), consider
an SDE that is fixed (and prespecified) rather than learnt.
However by approximating one of its terms with a neu-
ral network trained with score matching, then the SDE be-
comes a controlled way to inject noise so as to sample from
complex high-dimensional distributions such as images.

Our approach is most similar to Li et al. (2020), in that we
treat neural SDEs as learnt continuous-time model com-
ponents of a differentiable computation graph. Like both

Rackauckas et al. (2020) and Gierjatowicz et al. (2020)
we emphasise the connection of our approach to standard
mathematical formalisms. In terms of the two groups men-
tioned at the start of this section, we fall into the second:
we use stochasticity to model distributions on path space.
The resulting neural SDE is not an improvement to a simi-
lar neural ODE, but a standalone concept in its own right.

3. Method
3.1. SDEs as GANs

Consider some (Stratonovich) integral equation of the form

X0 ∼ µ, dXt = f(t,Xt) dt+ g(t,Xt) ◦ dWt,

for initial probability distribution µ, (Lipschitz continuous)
functions f , g and Brownian motion W . The strong solu-
tion to this SDE may be defined as the unique function S
such that S(µ,W ) = X almost surely (Rogers & Williams,
2000, Chapter V, Definition 10.9).

Intuitively, this means that SDEs are maps from a noise
distribution (Wiener measure, the distribution of Brownian
motion) to some solution distribution, which is a probabil-
ity distribution on path space.

We recommend any of Karatzas & Shreve (1991), Rogers
& Williams (2000), or Revuz & Yor (2013) as an introduc-
tion to the theory of SDEs.

SDEs can be sampled from: this is what a numerical SDE
solver does. However, evaluating its probability density
is not possible; in fact it is not even defined in the usual
sense.1 As such, an SDE is typically fit to data by asking
that the model statistics{

EX∼model
[
Fi(X)

]}
1≤i≤n,

1Technically speaking, a probability density is the Radon–
Nikodym derivative of the measure with respect to the Lebesgue
measure. However, the Lebesgue measure only exists for finite
dimensional spaces. In infinite dimensions, it is possible to de-
fine densities with respect to for example Gaussian measures, but
this is less obviously meaningful when used with maximum like-
lihood.

Neural SDEs as Infinite-Dimensional GANs

where ∆W ∼ N (0,∆tIw) denotes the increment of the
Brownian motion over the small time interval [t, t+ ∆t].

Historically, workflows for SDE modelling have two steps:

1. A domain expert will formulate an SDE model using
their experience and knowledge. One frequent and
straightforward technique is to add “σ◦dWt” to a pre-
existing ODE model, where σ is a fixed matrix.

2. Once an SDE model is chosen, the model parameters
must be calibrated from real-world data. Since SDEs
produce random sample paths, parameters are often
chosen to capture some desired expected behaviours.
That is, one trains the model to match target statistics:{

E
[
Fi(X)

]}
1≤i≤n, (2)

where the real-valued functions {Fi} are prespecified.
For example in mathematical finance, the statistics (2)
represent option prices that correspond to the func-
tions Fi, which are termed payoff functions; for the
well-known and analytically tractable Black–Scholes
model, these prices can then be computed explicitly
for call and put options (Black & Scholes, 1973).

The aim of this paper (and neural SDEs more generally) is
to strengthen the capabilities of SDE modelling by hybri-
dising with deep learning.

1.3. Contributions

SDEs are a classical way to understand uncertainty over
paths or over time series. Here, we show that the current
classical approach to fitting SDEs may be generalised, and
approached from the perspective of Wasserstein GANs. In
particular this is done by putting together a neural SDE
and a neural CDE (controlled differential equation) as a
generator–discriminator pair.

Arbitrary drift and diffusions are admissible, which from
the point of view of the classical SDE literature offers un-
precedented modelling capacity. As the Wasserstein loss
has a unique global minima, then in the infinite data limit
arbitrary SDEs may be learnt.

Unlike much previous work on neural SDEs, this operates
as a direct extension of the classical tried-and-tested ap-
proach. Moreover and to the best of our knowledge, this is
the first approach to SDE modelling that involves neither
prespecified statistics nor the use of density functions.

In modern machine learning parlance, neural SDEs become
continuous-time generative models. We anticipate applica-
tions in the main settings for which SDEs are already used
– now with enhanced modelling power. For example later
we will consider an application to financial time series.

2. Related work
We begin by discussing previous formulations, and appli-
cations, of neural SDEs. Broadly speaking these may be
categorised in two groups. The first use SDEs as a way
to gradually insert noise into a system, so that the termi-
nal state of the SDE is the quantity of interest. The second
instead consider the full time-evolution of the SDE as the
quantity of interest.

Tzen & Raginsky (2019a;b) obtain Neural SDEs as a con-
tinuous limit of deep latent Gaussian models. They train by
optimising a variational bound, using forward-mode autod-
ifferentiation. They consider only theoretical applications,
for modelling distributions as the terminal value of an SDE.

Li et al. (2020) give arguably the closest analogue to the
neural ODEs of Chen et al. (2018). They introduce neu-
ral SDEs via a subtle argument involving two-sided fil-
trations and backward Stratonovich integrals, but in doing

Brownian
Motion

SDE

Fixed statistics

Classical approach

Data or SDE

CDE

Final value

Learnt statistic

Generalised (GAN) approach

Continuously
perform control

Continuously
inject noise

Figure 1. Pictorial summary of just the high level ideas: Brownian motion is continuously injected as noise into an SDE. The classical
approach fits the SDE to prespecified statistics. Generalising to (Wasserstein) GANs, which instead introduce a learnt statistic (the
discriminator), we may fit much more complicated models.
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Numerical experiments

As a synthetic example, we generate 8192 samples {zt}t∈{0 ,1 , ··· ,63}
of the time-dependent Ornstein–Uhlenbeck process:

dzt =
(
µt− θzt

)
dt+ σdWt ,

where µ = 0.02, θ = 0.1, σ = 0.4 and z0 ∼ U[−1, 1].

We then trained a SDE-GAN with
• evolving hidden states of size 32,
• a 3-dimensional Brownian motion,
• neural networks (MLPs) with width 16 and a single hidden layer.
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Numerical experiments Neural SDEs as Infinite-Dimensional GANs

Figure 4. Sample paths from the time-dependent Ornstein–
Uhlenbeck SDE, and from the neural SDE trained to match it.

Sample paths Next we plot 50 samples from the true dis-
tribution against 50 samples from the learnt distribution.

See Figure 4. Once again we see excellent agreement be-
tween the data and the model.

Overall we see that the neural SDEs are sufficient to re-
cover classical non-neural SDEs: at least on this experi-
ment, nothing has been lost in the generalisation.

4.2. Google/Alphabet stock prices

Dataset Next we consider a dataset consisting of
Google/Alphabet stock prices, obtained from LOBSTER
(Haase, 2013). The data consists of limit orders, in partic-
ular ask and bid prices.

A year of data corresponding to 2018–2019 is used, with
an average of 605 054 observations per day. This is then
downsampled and sliced into windows of length approxi-
mately one minute, for a total of approximately 14.6 mil-
lion datapoints. We model the two-dimensional path con-
sisting of the midpoint and the log-spread.

Models Here we compare against two recently-proposed
and state-of-the-art competing neural differential equation
models; specifically the Latent ODE model of Rubanova
et al. (2019) and the continuous time flow process (CTFP)
of Deng et al. (2020). The extended version of CTFPs,

including latent variables, is used.

Between them these models cover several training regimes.
Latent ODEs are trained as variational autoencoders;
CTFPs are trained as normalising flows; neural SDEs are
trained as GANs. (To the best of our knowledge neural
SDEs as considered here are in fact the first model in their
class, namely continuous-time GANs.)

Performance metrics We study three test metrics: clas-
sification, prediction, and MMD.

Classification is given by training an auxiliary model to dis-
tinguish real data from fake data. We use a neural CDE
(Kidger et al., 2020) for the classifier. Larger losses, mean-
ing inability to classify, indicate better performance of the
generative model.

Prediction is a train-on-synthetic-test-on-real (TSTR) met-
ric (Hyland et al., 2017). We train a sequence-to-sequence
model to predict the latter part of a time series given the first
part, using generated data. Testing is performed on real
data. We use a neural CDE/ODE as an encoder/decoder
pair. Smaller losses, meaning ability to predict, are better.

Maximum mean discrepancy is a distance between proba-
bility distributions with respect to a kernel or feature map.
We use the depth-5 signature transform as the feature map
(Király & Oberhauser, 2019; Toth & Oberhauser, 2020).
Smaller values, meaning closer distributions, are better.

Results The results are shown in Table 1. We see that
neural SDEs outperform both competitors in all metrics.
Notably the Latent ODE fails completely on this dataset.
We believe this reflects the fact the stochasticity inherent
in the problem; this highlights the inadequacy of neural
ODE-based modelling for such tasks, and the need for neu-
ral SDE-based modelling instead.

4.3. Air Quality in Beijing

Next we consider a dataset of the air quality in Beijing,
from the UCI repository (Zhang et al., 2017; Dua & Graff,
2017). Each sample is a 6-dimensional time series of the
SO2, NO2, CO, O3, PM2.5 and PM10 concentrations, as
they change over the course of a day.

We consider the same collection of models and perfor-
mance statistics as before. We train this as a conditional

Table 1. Results for stocks dataset. Bold indicates best performance; mean ± standard deviation over three repeats.

Metric Neural SDE CTFP Latent ODE

Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3
MMD 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8

Figure: Sample paths generated by an SDE-GAN trained on an OU dataset [6]

Neural SDEs as Infinite-Dimensional GANs

embed discrete data into continuous space. We use this
approach for the time-dependent Ornstein–Uhlenbeck ex-
periment later.

Training loss The training losses used are the usual one
for Wasserstein GANs (Goodfellow et al., 2014; Arjovsky
et al., 2017). Let Yθ : (V,W ) 7→ Y represent the overall
action of the generator, and let Dφ : Y 7→ D represent the
overall action of the discriminator. Then the generator is
optimised with respect to

min
θ

[EV,WDφ(Yθ(V,W ))] , (7)

and the discriminator is optimised with respect to

max
φ

[EV,WDφ(Yθ(V,W ))− EzDφ(ẑ)] . (8)

Training is performed via stochastic gradient descent tech-
niques as usual.

Lipschitz regularisation Wasserstein GANs need a Lip-
schitz discriminator, for which a variety of methods have
been proposed. We use gradient penalty (Gulrajani et al.,
2017), finding that neither weight clipping nor spectral nor-
malisation worked (Arjovsky et al., 2017; Miyato et al.,
2018).

We attribute this to the observation that neural SDEs (as
with RNNs) have a recurrent structure. If a single step
has Lipschitz constant λ, then the Lipschitz constant of the
overall neural SDE will be O(λT ) in the time horizon T .
Even small positive deviations from λ = 1 may produce
large Lipschitz constants. In contrast gradient penalty reg-
ularises the Lipschitz constant of the entire discriminator.

Training with gradient penalty implies the need for a dou-
ble backward. If using the continuous-time adjoint equa-
tions of (Li et al., 2020), then this implies the need for a
double-adjoint. Mathematically this is fine: however for
moderate step sizes this produces gradients that are suffi-
ciently inaccurate as to prevent models from training. For
this reason we instead backpropagate through the internal
operations of the solver.

Learning any SDE The Wasserstein metric has a unique
global minima at Y = Ytrue. By universal approxima-
tion of Neural CDEs (with respect to either continuous in-
puts or interpolated sequences, corresponding to dense and

sparse data regimes respectively) (Kidger et al., 2020), the
discriminator is sufficiently powerful to approximate the
Wasserstein metric over any compact set of inputs.

Meanwhile by the universal approximation theorem for
neural networks (Pinkus, 1999; Kidger & Lyons, 2020) and
convergence results for SDEs (Friz & Victoir, 2010, The-
orem 10.29) it is immediate that any (Markov) SDE of the
form

dYt = µ(t, Yt) dt+ σ(t, Yt) ◦ dWt

may be represented by the generator. Beyond this, the use
of hidden state X means that non-Markov dependencies
may also be modelled by the generator. (This time without
theoretical guarantees, however – we found that proving a
formal statement hit theoretical snags.)

4. Experiments
We perform experiments across four datasets; each one is
selected to represent a different regime. First is a univariate
synthetic example to readily compare model results to the
data. Second is a large-scale (14.6 million samples) dataset
of Google/Alphabet stocks. Third is a conditional gener-
ative problem for air quality data in Beijing. Fourth is a
dataset of weight evolution under SGD.

In all cases see Appendix A for details of hyperparameters,
learning rates, optimisers and so on.

4.1. Synthetic example: time-dependent
Ornstein–Uhlenbeck process

We begin by considering neural SDEs only (our other
experiments feature comparisons to other models), and
attempt to mimic a time-dependent one-dimensional
Ornstein–Uhlenbeck process. This is an SDE of the form

dzt = (µt− θzt) dt+ σ ◦ dWt.

We let µ = 0.02, θ = 0.1, σ = 0.4, and generate 8192
samples from t = 0 to t = 63, sampled at every integer.

Marginal distributions We plot marginal distributions at
t = 6, 19, 32, 44, 57. (Corresponding to 10%, 30%, 50%,
70% and 90% of the way along.) See Figure 3. We can
visually confirm that the model has accurately recovered
the true marginal distributions.

Figure 3. Left to right: marginal distributions at t = 6, 19, 32, 44, 57.Figure: Marginal distributions at t = 6, 19, 32, 44, 57.
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Numerical experiments
Next, we consider a dataset of Google/Alphabet stock prices, obtained
by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])

We trained a SDE-GAN with
• evolving hidden states of size 96,
• a 3-dimensional Brownian motion,
• neural networks (MLPs) with width 64 and two hidden layers.
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Numerical experiments
Next, we consider a dataset of Google/Alphabet stock prices, obtained
by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])

We trained a SDE-GAN with
• evolving hidden states of size 96,
• a 3-dimensional Brownian motion,
• neural networks (MLPs) with width 64 and two hidden layers.

Metric Neural SDE Continuous Time Neural ODE
[6] Flow Process [8] [9]

Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3

Kernel distance 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8

Table: Stocks dataset: mean ± standard deviation over 3 runs. We model the
2D path consisting of the midpoint and log-spread (samples have length 100).
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Conclusion

• NSDEs are continuous-time generative models for time series

• Flexible; ideas applicable to both mechanistic and deep models

• General approaches: Wasserstein GAN or Variational Inference

• NSDEs can be difficult to train! (and training can take a long time!)

• Software for neural differential equations in Python (PyTorch, Jax)
– https://github.com/rtqichen/torchdiffeq
– https://github.com/google-research/torchsde
– https://github.com/patrick-kidger/diffrax
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Thank you
for your attention!
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