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Introduction

Two dominant modelling paradigms:

Differential equations and Neural networks

Neural differential equations: awkward hybrid or perfect match?

Goal for this talk: convince you of the latter!
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Introduction

Two dominant modelling paradigms:

Differential equations and Neural networks
Neural differential equations: awkward hybrid or perfect match?

Goal for this talk: convince you of the latter!

Neural Ordinary Differential Equations, NeurIPS 2018.

Neural Controlled Differential Equations for Irregular Time Series,
NeurIPS 2020.

Universal Differential Equations for Scientific Machine Learning, 2020.

Scalable Gradients for Stochastic Differential Equations,
AISTATS 2020.

Neural SDEs as Infinite-Dimensional GANs, ICML 2021.

) = W = E

(W Efficient and Accurate Gradients for Neural SDEs, NeurIPS 2021.
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What is a neural differential equation?

There are differential equations where the vector field is parametrised
as a neural network.

Standard example — Neural ODEs (Chen et al. 2018).

Y ),
y(0) = yo,

where fy can be any neural network (feedforward, convolutional, etc).
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Examples of neural ordinary differential equations

A simple example: The SIR model for modelling infectious diseases

4 (50 —bs(t)i(1)
— ([(t)) = (bs(z‘)z‘(t) ki(f)) ;
r(t) ki(1)

where b and k are parameters that are learnt from data.
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At the other extreme, Neural ODEs can outperform standard machine
learning models (e.g. ResNets) on tasks such as image classification [2].
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Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

=== Ground Truth
Figure: Recurrent Neural Network e Observation
== Prediction
== Extrapolation

Figure: Neural ODE
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Universal differential equations for scientific computing

Universal differential equations [3] are the general idea of modelling
systems with
dy

E :fknown(t7)/(t)) +funknown(t7)/(t))- (1)

® finown describes the system well and utilizes domain knowledge.

® finknown IS a (small) neural network so that (1) can better fit data.

5.0
25
»
1]
% 0.0
-25 —@- Linear model
=@= NN solution
_50F True solution

0 1 2 3 4 5 6 7

Figure: Approximating a FENE-P model for non-Newtonian fluids (from [3]).
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Why Neural ODEs?

e Continuous time, so well suited for handling (irregular) time series
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Why Neural ODEs?

e Continuous time, so well suited for handling (irregular) time series
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e State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]
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Why Neural ODEs?

Continuous time, so well suited for handling (irregular) time series

e Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]

Choice of ODE solver allows trade-offs between accuracy and cost

e Allows for “continuous time” backpropagation with O(1) memory!
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Why Neural ODEs?

e Continuous time, so well suited for handling (irregular) time series

Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]

Choice of ODE solver allows trade-offs between accuracy and cost

Allows for “continuous time” backpropagation with O(1) memory!

Potential limitation

ODEs are deterministic, so are not suitable for modelling “noisy” data.
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Neural Stochastic Differential Equations

The Neural SDE takes the form

vt = Lo(Xt),
dx: = pe(t, xt)dt + og(t, x¢) dWr,
Xo ~ (),
where
® 119,09 and vy are neural networks.
® /yisalinear map.
e Wis a multidimensional Brownian motion.

® ¢~ N(0,1y) is some initial noise.
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Neural Stochastic Differential Equations

The Neural SDE takes the form

vt = Lo(Xt),
dxy = ug(f, Xt)dl'—i- Ug(l', Xf)de7
Xo ~ v9(§),

where
® 19,09 and vy are neural networks.

® /yisalinear map.
e |Wis a multidimensional Brownian motion.

® ¢~ N(0,1y) is some initial noise.

Questions
e \What does it mean for a Neural SDE to correctly model the data?
e Should we minimize mean squared error? (like for Neural ODEs)
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Loss functions for Neural SDEs
We want

Distribution (SDE solution) ~ Distribution(Data)
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Loss functions for Neural SDEs
We want
Distribution (SDE solution) ~ Distribution(Data)

Some approaches:

e Match mean behaviour, i.e. minimize |Eyspe[F(Y)] — Ey~pata[F(V)]]
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Loss functions for Neural SDEs
We want
Distribution (SDE solution) ~ Distribution(Data)

Some approaches:

e Match mean behaviour, i.e. minimize |Eyspe[F(Y)] — Ey~pata[F(V)]]

® fisaneural network with ||F|| < 1 trained to maximize the difference
¢ Fisdefined by areproducing kernel k(-,-). If F =", oyk(x;, -), then
0 [EsoelF(1)] ~ EvaalF)]| = B [K0,x)] = 2By [k(x,)] + By e k()]
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Loss functions for Neural SDEs
We want
Distribution (SDE solution) ~ Distribution(Data)

Some approaches:

e Match mean behaviour, i.e. minimize |Eyspe[F(Y)] — Ey~pata[F(V)]]
® fisaneural network with ||F|| < 1 trained to maximize the difference
¢ Fisdefined by areproducing kernel k(-,-). If F =", oyk(x;, -), then
Hrg%}(l | Esoe[F(V)] — Epata[F(V)]| = B [k(X, X)] — 2By, [k(X,¥)] + By [k(y, V)],
where x,x’,y,y’ are independent with x,x’ ~ SDE and y,y’ ~ Data.

® Domain knowledge: E.g. in finance, F can be the pay-off of an option

e Variational inference gives lower quality SDEs, but is easier to train!
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Training Neural SDEs in the Wasserstein metric

We would like to train the SDE to minimize the 1-Wasserstein distance:

Wi (SDE,Data) :==  sup  |Eywspe[F(Y)] — EypatalF(V)]]-

”FHLipsch\tle

Thatis, we want to find F that distinguishes between real and fake data.
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Training Neural SDEs in the Wasserstein metric

We would like to train the SDE to minimize the 1-Wasserstein distance:

Wi (SDE,Data) :==  sup  |Eywspe[F(Y)] — EypatalF(V)]]-

”FHLipsch\tle

Thatis, we want to find F that distinguishes between real and fake data.

Some natural choices:

e Feedforward neural network
e Recurrent neural network

e Another neural differential equation!

We use the latter to define F, which is then trained alongside the SDE.
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Neural SDEs as Infinite-Dimensional GANs

In data science, a generator (NSDE) trained with learnt discriminator(s)
(Fg) is known as a Generative Adversarial Network (or GAN).

They usually generate images — not time series!

er (Univers
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Neural SDEs as Infinite-Dimensional GANs

Initial Hidden state Output

© Generator | Xo = Go(V) }H{dX, = po(t, Xy) dt + oo (t, Xi) 0 AW, (Vi = X, + B )
L e e S - - - - - - Y, - - - - - - - —-——-— - - —————————————/————/— s = ——/———/ | ,,,,,,, I

Classical approach Generalised (GAN) approach

Fixed statistics Learnt statistic

1Final value

SDE . CDE
!
NS A/ S : |
N o v 1 1 Continuously ! PN T PAPIIN 4+Continuously
E v ':'Tf:\':‘ ' E E Einject noise ! Co E E E ' E E 1 perform control
[ . o . Lot . . U T
‘ A A Brownian =~ '---------- > Vo V4

o TN~ NEEL ) otion N\M Data or SDE
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Numerical experiments

As a synthetic example, we generate 8192 samples {Zt}e (0,1, 63}
of the time-dependent Ornstein—Uhlenbeck process:

dZt = (,ut — GZI) dt+ O'de,

where p =0.02,0 =0.1,0 = 0.4 and zg ~ U[-1, 1].

We then trained a SDE-GAN with

e evolving hidden states of size 32,
e 3 3-dimensional Brownian motion,

e neural networks (MLPs) with width 16 and a single hidden layer.
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Numerical experiments

25
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20

] 10 20 30 40 50 60

Figure: Sample paths generated by an SDE-GAN trained on an OU dataset [6]
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Figure: Marginal distributions att =6, 19, 32, 44, 57.

Neural SDEs for time series 20 Jul



Numerical experiments

Next, we consider a dataset of Google/Alphabet stock prices, obtained
by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])
We trained a SDE-GAN with

e evolving hidden states of size 96,
® 3 3-dimensional Brownian motion,

e neural networks (MLPs) with width 64 and two hidden layers.
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Numerical experiments

Next, we consider a dataset of Google/Alphabet stock prices, obtained
by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])
We trained a SDE-GAN with

e evolving hidden states of size 96,
® 3 3-dimensional Brownian motion,

e neural networks (MLPs) with width 64 and two hidden layers.

Metric Neural SDE Continuous Time Neural ODE

6] Flow Process [8] 9]
Classification 0.357 +0.045 0.165+ 0.087 0.000239 + 0.000086

Prediction 0.144 +0.045 0.725+0.233 46.2 £12.3
Kernel distance  1.92 + 0.09 2.70£0.47 60.4 4+ 35.8

Table: Stocks dataset: mean = standard deviation over 3 runs. We model the
2D path consisting of the midpoint and log-spread (samples have length 100).
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Conclusion

NSDEs are continuous-time generative models for time series

Flexible; ideas applicable to both mechanistic and deep models

General approaches: Wasserstein GAN or Variational Inference

NSDEs can be difficult to train! (and training can take a long time!)

Software for neural differential equations in Python (PyTorch, Jax)

- https://github.com/rtgichen/torchdiffeq
— https://github.com/google-research/torchsde
— https://github.com/patrick-kidger/diffrax
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https://github.com/rtqichen/torchdiffeq
https://github.com/google-research/torchsde
https://github.com/patrick-kidger/diffrax

Thank you
for your attention!

James Foster (University of Bath) Neural SDEs for time series



Outline

@® References

James F r (University of Bath) Neural SDEs for time series



References I

[4 R.T.0.Chen,Y.Rubanova, J. Bettencourt and D. Duvenaud.
Neural Ordinary Differential Equations, Neural Information
Processing Systems, 2018.

(4 J.Zhuang, N. C. Dvornek, S. Tatikonda and J. S. Duncan. MALI: A
memory efficient and reverse accurate integrator for Neural ODEs,
International Conference on Learning Representations (ICRL),
2021.

[§ C.Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R.
Supekar, D. Skinner, A. Ramadhan and A. Edelman. Universal
Differential Equations for Scientific Machine Learning,
arXiv:2001.04385, 2020.

[§ P.Gierjatowicz, M. Sabate-Vidales, D. Sigka, L Szpruch and Z. Zurig.
Robust pricing and hedging via neural SDEs, arXiv:2007.04154,
2020.

James Foster (University of Bath) Neural SDEs for time series 20 July 2023


https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2007.04154

References II

[3 T.Karras, S. Laine and T. Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks, IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 20109.

[d P.Kidger, J. Foster, X. Li, H. Oberhauser and T. Lyons. Neural SDEs
as Infinite-Dimensional GANs, International Conference on
Machine Learning, 2021.

[4 J. Haase. Limit order book system — the efficient reconstructor,
https://lobsterdata.com, 2013.

[4 R.Deng, B. Chang, M. A. Brubaker, G. Mori and A. Lehrmann.
Modeling Continuous Stochastic Processes with Dynamic
Normalizing Flows, Neural Information Processing Systems, 2020.

James Foster (University of Bath) Neural SDEs for time series 20 July 2023


https://lobsterdata.com

References III

[3 Y.Rubanova, R. T. Q. Chen and D. Duvenaud. Latent Ordinary
Differential Equations for Irregularly-Sampled Time Series,
Neural Information Processing Systems, 2019.

[4 T. Delise. Neural Options Pricing, arXiv:2105.13320, 2021.

(3 X.Li, T.-K. L. Wong, R. T. Q. Chen and D. Duvenaud. Scalable
Gradients for Stochastic Differential Equations, International
Conference on Artificial Intelligence and Statistics (AISTATS),
2020.

3 P.Kidger, J. Foster, X. Liand T. Lyons. Efficient and Accurate
Gradients for Neural SDEs, arXiv:2105.13493, 2021.

[ W.Xu, R.T.Q. Chen, X. Li and D. Duvenaud. Infinitely Deep Bayesian
Neural Networks with Stochastic Differential Equations,
arXiv:2102.06559, 2021.

James Foster (University of Bath) Neural SDEs for time series 20 July 2023 2425


https://arxiv.org/abs/2105.13320
https://arxiv.org/abs/2105.13493
https://arxiv.org/abs/2102.06559

References IV

[4 P.Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series.
Neural Information Processing Systems, 2020.

[d 3. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. Neural Rough
Differential Equations for Long Time Series. International
Conference on Machine Learning (ICML), 2021.

[4 J. Morrill, P. Kidger, L. Yang and T. Lyons. Neural Controlled
Differential Equations for Online Prediction Tasks.
arXiv:2106.11028, 2021.

[4 S.N.Cohen, C.Reisinger and S. Wang. Arbitrage-free neural-SDE
market models, arXiv:2105.11053, 2021.

James Foster (University of Bath) Neural SDEs for time series 20 July 2023


https://arxiv.org/abs/2106.11028
https://arxiv.org/abs/2105.11053

	Introduction
	Neural Ordinary Differential Equations
	Neural Stochastic Differential Equations
	Numerical experiments
	References

